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SUMMARY

This analysis is aimed at understanding the etieasing a three-phase brushless DC motor as &i\gas
load” by connecting its three winding wires to gndwia three external resistors. This is sometimes
termed dynamic braking, and can also be thoughsafsing the motor as a generator. In this
configuration, there is no commutation being perfed. Current flows through all three windings
simultaneously.

There are two common methods of connecting thetiwiedings (or phases) of a BLDC motor: (1) a
Y-wound configuration; and (2) a Delta-wound\yound) configuration. Since the equations govegni
these two winding styles are different, the twofmgurations are analyzed separately. Interestinly
two analyses show that the governing equationsimgléhe operating parameters (motor position, dpee
torque, and power dissipation), external resisédue, and motor properties (phase-to-phase resestan
and motor constant) are independent of the windoxdiguration. Table 1 summarizes the bottom-line
equations:
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Tablel. Summarized equations
Symbol Units Description
£,,6,.6, Y Individual winding back-EMF’s (windings A, B, C)
R Q External load resistance
R, Individual winding resistance (relation ® _ depends o or Y)
R Q Motor phase-to-phase resistance (measured acrgge/a motor wires)
p-p
0 Q Rotor position
0 rads/sec Motor speed
k. V-sec/rad = N-m/AmP| | gividual winding constant (relation tdepends on or Y)
K V-sec/rad = N-m/Amp| Average Motor Constant (=volampnstant; =torque constant)

Table 2. List of symbols



Y-WOUND MOTOR ANALYSIS

Figure 1 shows a schematic representation of themhmad resistor configuration for a
Y-wound motor. In the following analysis, we wilkglect the effects of the winding
inductances.

Figure 1. Diagram of 3-phase Y-wound Brushless DC Motor with
external load resistors

The individual winding back EMF’s are proportiomalmotor speed and we assume they vary
sinusoidally with rotor position:

4 =k, 0sin(6) (1.1)
£ = kmésin[6’+2—§j (1.2)
£c = kmésin[e +4§j : (1.3)

where @ denotes the rotor position atkg represents the winding constant (i.e. voltage temms

for each winding. Note that this is not equalte &verage voltage constali;q,, that is

commonly given in motor datasheets. For a Y-wouonador, these two quantities are related by
(see Appendix A):

k. :%ﬁm ~0.6046 . (1.4)

One thing to note is the fact that the sum of thksse back-EMF’s is always zero:
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Conservation of current gives:

in+ig+ic=0 = ic=—(iy+ig) (1.6)
Labeling the voltage at the center tapvaswe can write KVL for each winding leg:
(Ry+R)in=6a"V; (1.7)
(Ry+R)ig =2 -V, (1.8)
(Rv+R)ic=8—V; , (1.9)

where, as indicated in figure R, denotes the resistance of each winding (equadlifdte
phase-to-phase resistanég, , listed in most datasheets) aRd denotes the resistance of each
of the three external load resistors. Now solh@) forV; :

V; =6,— (R, +R))i, (1.10)
Plugging (1.10) into (1.8):

—(Ry+R)i,+(Ry+R )iz =65 —€4 (1.12)
Plugging (1.10) and (1.6) into (1.9):

—2(Ry+R)in—(Ry R )ig =&c — &4 (1.12)

Adding (1.11) and (1.12):

3(Ry+R )ia=6c+65— 2,
2c,— €5 — & :38A—(8A+SB +&¢) (1.13)
3(Ry+R) 3(Ry+R)

Now making use of (1.5), we have:

= Iy =

PR/ . S (1.14)
RvtR Ry+R
The other two winding currents are similarly dedve be:
i, =—28 - K sin[é’ +2—”j (1.15)
RvtR Ry+R 3
and
% . KO sin[é’ +ﬂj (1.16)
RvtR Ry+R 3



Plugging (1.13) into (1.10), we find that the centgp voltage), , is equal to zero. This is

sometimes termed\artual ground. (If one had assumed the virtual ground at thd sfif the
analysis, the above formulas for winding currerts be derived by inspection alone).

It is a good time to notice that the only differerimetween the three winding currents is a phase
shift. They all have the same amplitude, but &@ degrees apart in phase.

Continuing with the study of winding A, the torgpeduced byi, is proportional ta, and we
assume it varies sinusoidally with rotor positiantl the same phase as the back-EMF):

T, =k,i,sin(9) (1.17)
Plugging (1.14) into this, we obtain an expresdarthe torque produced solely by (as a
function of rotor position):

2
T,.(0)= 40 g @ (1.18)
Rv+R
The average of this torque over one rotor revolfuigogiven by:
2 21 2 2
T, = [Tdo- == Tsirt(0)do-——20 (1.19)
27 27 Ry +R % 2r Ry +R
Simplifying:
) -
T, :L (1.20)
2(Ry+R)

Again, this represents the average load torquealtlee current flowing through winding A
only. Windings B and C contribute the same amafitbrque. The total average load torque
produced by all three winding currents is simphethtimes this value:

> -
Tioad = Ta+Tg+T1c :ﬂA:& (1.21)
2(Ry+R)
Substituting fork,, and R, in terms ofk  and R,  :
- 7°k20

T, =—"T— 1.22

Load g(Rp7p + ZRL) ( )
This equation expresses the average load torquiped by the load motor as a function of the
motor’s properties (i.e. winding resistance andageé constant), motor speed, and external load
resistance. Note that the actual load “felt” & mhotor shaft will be slightly higher due to
viscous and other friction losses within the loaotan.

Equation (1.22) can be solved & :
R == 2[2519 Ry

18TLoad 2
If a particular load is required at a specific mapeed, equation (1.23) can be used to determine
the value of the external load resistors.

(1.23)



To determine the power dissipation (as heat) withenload motor and the external resistors, we
use the familiar relatiod® =i’R. The average heat dissipation in the load metgiven by:

" 3 27 3RN 27[-2
Proer = ! Pde == ! i2d6
22 27
~Re KO Tsin(6)do (1.24)
2r (RN + RL) 0
__3R/k0”’
2(Ry+R)’
Again in terms ofR, , and |2m:
~ R 2A26')2
o =2 o > (1.25)
36 Rop +R.
2
Similarly, the average power dissipatiorBACH external load resistor is:
" 1 2 1 2r
P=—|PRdo=—[iiRdO
L 272_ ) L 272__£ ARL
22 27
_R_kO [ sin (6)do (1.26)
2r (RN + RL) 0
__RkY®
2(Ri+R )
And once again in terms dt, | andk:
2292
B - RFL:’ K™ (1.27)
54£p2p+ RL]

Of course there are three external load resissort)e total average power dissipation in the
external resistors is simply three times the alzpuamtity.



DELTA-WOUND MOTOR ANALYSIS

Figure 2 shows a schematic representation of themtoad resistor configuration for a
A-wound motor. In the following analysis, we wikglect the effects of the winding
inductances.

winding B

Figure 2. Diagram of 3-phase A-wound Brushless DC Motor with
external load resistors

The individual winding back EMF’s are proportiomalmotor speed and we assume they vary
sinusoidally with rotor position:

£ =k, 0sin(6) (2.1)
£ = kmésin[éwrz—;j (2.2)
£c = kmésin[e +4—;’j : (2.3)

where @ denotes the rotor position akg represents the winding constant (i.e. voltage teomnp

for each winding. Note that this is not equalite average voltage constaﬁjn., that is
commonly given in motor datasheets. Fa~aound motor, these two quantities are related by:

K. :%ﬁm ~1.047% . (2.4)
Performing KVL on each of the three winding legs:

V,-V,=-g,+R,i, (2.5)

V; -V, =—g;+R,ig (2.6)

V,-V,=-¢.+R,ic (2.7)



where, as indicated in figure R, denotes the resistance of each winding (equaBdirhes the
phase-to-phase resistan¢g, , listed in most datasheets).
From Ohm’s law at each vertex of the delta:

V, =i,R. (2.8)

V, =i,R. (2.9)

V, =i,R (2.10)
Conservation of current at each vertex yields:

iy =1,—lg (2.12)

i, =lg—i, (2.12)

i3 =Iic —ig (2.13)
Plugging (2.11) through (2.13) into (2.8) througtlQ):

Vi :(iA_iC)RL (2.14)

V, =(ig—i,) R (2.15)

V, =(ic —ig) R (2.16)
And plugging (2.14) through (2.16) into (2.5) thghu(2.7):

(2R +Ry)i,+Rig+Ric. =—¢, (2.17)

Ri,—(2R +Ry)ig+Ric. =—¢; (2.18)

Ri,+Ris—(2R +Ry)ic =—&¢ (2.19)

This is a simple linear algebraic system of thrgegagions which can be written in matrix form as
follows:

-(2R +Ry) R R A —Ea
R —(2RL+RN) R g |[=| —€g (2.20)
R R _(ZRL + I%/\/) ic —&c
Solving this system for the winding currents, wéaoin
; :RL(8A+6‘B+8C)+RN8A: en kO sin(6) (2.21)
’ Ry (3R +Ry) R +R, R +R, '
I :RL(8A+85+50)+RN5'B: &g _ m- Sin[9+EJ (2.22)
’ R (3R +Ry) R +R, R +R, 3 '
=R (Eareatoc) Rise 2o kO sin[mﬂJ , (2.23)
Rv (3R +Ry) R +R, R +R,

where we have used equation (1.5) to reduce thatiegs (the sum of the back-EMF’s is also
zero for a delta winding configuration).

Continuing with the study of winding A, the torgoeduced byi, is proportional ta, and we
assume it varies sinusoidally with rotor positiantl the same phase as the back-EMF):
T, =k.i,sin(9) (2.24)



Plugging (2.21) into this, we obtain an expresdwrthe torque produced solely by (as a
function of rotor posmon)

T,(8)=—"—sin*(8 (2.25)
(6) =3 s (0)
The average of th|s torque over one rotor revotuisogive by:
jT do = jsm yao-—L_Kal (2.26)
2r R+ RN
Simpllfylng, we obtaln.
)
foo—ff (2.27)
2(3R +Ry)

Again, this represents the average load torquealtlee current flowing through winding A
only. Windings B and C contribute the same amad@itbrque. The total average load torque
produced by all three winding currents is simplethtimes this value:

2
Tioaa = Ta+To +T¢ :% (2.28)
2(3R +Ry)
Substituting fork | and R, in terms ofk  andR,
2002,
T KO (2.29)
9(R, ,+2R)

Note that this is exactly the same relation thafousd for a Y-wound motor in (1.22). Solving
for R will therefore yield the same equation as (1.23).

The average heat dissipation in the load motoivisrgby:

" 3 2 3RN 27[-2
Proer = ! Pdo == { i2d6
22 27
SRy ke [ sin* (6)de (2.30)
2r (3RL + RN) 0
__BRyk30”
2(3R +R,)
Again in terms ofR, , and |2m:
~ R 2A26')2
__ Rk (2.31)

I:)moor -
| 36 Rp’p+ 2
5 R

Notice again that this is the same equation weiddafor a Y-wound motor in equation (1.25).

Similarly, the average power dissipatiorBACH external load resistor is:



2r

R 1 2 1 1 2
PL:2_7Z' Rdf=— ! _ZJ;('A_'c) R do
:iMT sin(8) - si [9 D do
27 3R +R, %
_ 1 Rk (|1 cod & .
= 3R+RN£ {1 co{ 3 }sw(@) SIVE j 00@9)] do

_ ) (2.32)
} sin(0+¢)| do

w

ngamé?[ﬂﬂiﬁ
27 3R +R, 3|\ 2 2

_1 3Rk Too
"% R R ) Ism (0+¢)do

3R kme
2(3R +Ry)

Once again, when putting this in termsRf ; and |2m we obtain:

5 __ R7kp* (2.33)

54 o0 -
(z*'ﬂ

just as for the Y-wound configuration.




APPENDIX A - MOTOR CONSTANT CONVERSION

For a Y-wound motor

The phase-to-phase voltage across windings A aisdg®en by:
Vig=Va—Vy=€,—¢€5

=k.0 {sin(@)— sin 9+2—§ﬂ

ol
onp-en()

Simplifying:
Vg =k, 0+/3sin(6+¢)

Differentiating:

% = k,6/3cog6 +9)
The min/max occurs when:
dV
—2 -0 = coq4.+¢9)=0
36 (Gn+9)

:>9m,n+¢:%+n7z- ; n=0,£1+£2,..

:>9m,n:%_¢+n7[ ; n=0,+1+2,..

Differentiate again to check for max or min:

ﬂ’;B:—kméx@'sin(eJrgé)

dé

dV,g s [7[ j
—L8 =—-k #3sin| =+n
ral O3] 2+ Vs

Note that maximum corresponds to points whg(%/;& <0. This is the case when n=0 (among

others). Therefore, we know théis reaches its max &, _, :%—(é. What we’re interested in

is the average value ®fg throughout a 60 degree range of rotor positiontered at this
maximum point:

-10 -



Ot o

12371 a0=3 [k odEs
Vg = = I”VABdé’_ = j k,0/3sin(6 +¢)do
33 2%
_Tkmeﬂj”sm(ew)de
:7km9”j¢ sin(6 +¢)do
:%kme[—cos(quﬁ)],?j
:%kme{—co{ﬁ—mq;} co{z—¢+¢ﬂ
T 3 3
:ﬂkmg{—COS[Ej-i- coz{zﬂ
T 3 3
:ﬁkmé[o.& 0.9
T
:%kmg
N

km
From this we conclude:
-~ 33
kn=—k,

T

For a A-wound motor:
The phase-to-phase voltage across fkarto V, is given by:

-11 -



Ve =V, -V, =¢, -

o oo %)

—kme{sm() sin(6) {

V,=V,-V,=¢, =k gsin(6)

)
it oof5] st o } ®)
=wJ‘1—w{2—;ij [ o{5 oy mem

3

By inspection, max occurs élt:%. What we’re interested in is the average valu¥;pf

throughout a 60 degrees range of rotor positiomteced at this maximum point:

T T
.z 4

32 6 3 2 6 .
_2 Iﬂvlde:;”I”kmesm(H)dH
2 6 2 6
27

3 _3
=2k, 6 | sin(6)de
—kn stm()

3
:ékmé —CO{EJ-F co{zj
V4 3 3
:ékm9[0.5+ 0.
T

~3k.6
T

H,\’_J
K
From this we conclude:
~ 3
Ky =—k,
T
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