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SUMMARY 
This analysis is aimed at understanding the effect of using a three-phase brushless DC motor as a “passive 
load” by connecting its three winding wires to ground via three external resistors.  This is sometimes 
termed dynamic braking, and can also be thought of as using the motor as a generator.  In this 
configuration, there is no commutation being performed.  Current flows through all three windings 
simultaneously.   
There are two common methods of connecting the three windings (or phases) of a BLDC motor: (1) a 
Y-wound configuration; and (2) a Delta-wound (∆-wound) configuration.  Since the equations governing 
these two winding styles are different, the two configurations are analyzed separately.  Interestingly, the 
two analyses show that the governing equations relating the operating parameters (motor position, speed, 
torque, and power dissipation), external resistor value, and motor properties (phase-to-phase resistance 
and motor constant) are independent of the winding configuration.  Table 1 summarizes the bottom-line 
equations: 
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Table 1.  Summarized equations 
 
 

Symbol Units Description 

, ,
A B C

ε ε ε  V Individual winding back-EMF’s (windings A, B, C) 

L
R  Ω External load resistance 

W
R  Ω Individual winding resistance (relation to 

p p
R

−
 depends on ∆ or Y) 

p p
R

−
 Ω Motor phase-to-phase resistance (measured across any two motor wires) 

θ  Ω Rotor position 

θ�  rads/sec Motor speed 

m
k  V-sec/rad = N-m/Amp Individual winding constant (relation to ˆ

m
k  depends on ∆ or Y) 

ˆ
m

k  V-sec/rad = N-m/Amp Average Motor Constant (=voltage constant; =torque constant) 

Table 2. List of symbols 
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Y-WOUND MOTOR ANALYSIS 
Figure 1 shows a schematic representation of the motor-load resistor configuration for a 
Y-wound motor.  In the following analysis, we will neglect the effects of the winding 
inductances. 
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Figure 1. Diagram of 3-phase Y-wound Brushless DC Motor with 

external load resistors  
 
 
The individual winding back EMF’s are proportional to motor speed and we assume they vary 
sinusoidally with rotor position: 
 ( )sinA mkε θ θ= �          (1.1) 
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πε θ θ = +  
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where θ  denotes the rotor position and mk  represents the winding constant (i.e. voltage constant) 

for each winding.  Note that this is not equal to the average voltage constant, ˆ
mk , that is 

commonly given in motor datasheets.  For a Y-wound motor, these two quantities are related by 
(see Appendix A):  

ˆ ˆ0.6046
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m m mk k k
π
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One thing to note is the fact that the sum of these three back-EMF’s is always zero: 
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Conservation of current gives: 
 ( )0A B C C A Bi i i i i i+ + = ⇒ = − +        (1.6) 

Labeling the voltage at the center tap as TV , we can write KVL for each winding leg: 

 ( )W L A A TR R i Vε+ = −          (1.7) 

 ( )W L B B TR R i Vε+ = −          (1.8) 

 ( )W L C C TR R i Vε+ = −   ,        (1.9) 

where, as indicated in figure 1, WR  denotes the resistance of each winding (equal to half the 

phase-to-phase resistance, p pR
−

, listed in most datasheets) and LR  denotes the resistance of each 

of the three external load resistors.  Now solving (1.7) for TV : 

 ( )T A W L AV R R iε= − +          (1.10) 

Plugging (1.10) into (1.8): 
 ( ) ( )W L A W L B B AR R i R R i ε ε− + + + = −       (1.11) 

Plugging (1.10) and (1.6) into (1.9): 
 ( ) ( )2 W L A W L B C AR R i R R i ε ε− + − + = −       (1.12) 

Adding (1.11) and (1.12): 
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Now making use of (1.5), we have: 
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The other two winding currents are similarly derived to be: 
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Plugging (1.13) into (1.10), we find that the center tap voltage, TV , is equal to zero.  This is 

sometimes termed a virtual ground.  (If one had assumed the virtual ground at the start of the 
analysis, the above formulas for winding currents can be derived by inspection alone). 
 
It is a good time to notice that the only difference between the three winding currents is a phase 
shift.  They all have the same amplitude, but are 120 degrees apart in phase.   
 
Continuing with the study of winding A, the torque produced by Ai  is proportional to Ai  and we 

assume it varies sinusoidally with rotor position (with the same phase as the back-EMF): 
 ( )sinA m AT k i θ=          (1.17) 

Plugging (1.14) into this, we obtain an expression for the torque produced solely by Ai  (as a 

function of rotor position): 
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The average of this torque over one rotor revolution is given by: 
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Simplifying: 
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Again, this represents the average load torque due to the current flowing through winding A 
only.  Windings B and C contribute the same amount of torque.  The total average load torque 
produced by all three winding currents is simply three times this value: 
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Substituting for mk  and WR  in terms of ˆmk  and p pR
−
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This equation expresses the average load torque produced by the load motor as a function of the 
motor’s properties (i.e. winding resistance and voltage constant), motor speed, and external load 
resistance.  Note that the actual load “felt” at the motor shaft will be slightly higher due to 
viscous and other friction losses within the load motor. 
 
Equation (1.22) can be solved for LR : 
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If a particular load is required at a specific motor speed, equation (1.23) can be used to determine 
the value of the external load resistors. 
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To determine the power dissipation (as heat) within the load motor and the external resistors, we 
use the familiar relation 2P i R= .  The average heat dissipation in the load motor is given by: 
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Again in terms of p pR
−

 and ˆmk : 
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Similarly, the average power dissipation in EACH external load resistor is: 
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And once again in terms of p pR
−

 and ˆmk : 
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Of course there are three external load resistors, so the total average power dissipation in the 
external resistors is simply three times the above quantity. 
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DELTA-WOUND MOTOR ANALYSIS 
Figure 2 shows a schematic representation of the motor-load resistor configuration for a 
∆-wound motor.  In the following analysis, we will neglect the effects of the winding 
inductances. 
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Figure 2. Diagram of 3-phase ∆-wound Brushless DC Motor with 

external load resistors 
 
The individual winding back EMF’s are proportional to motor speed and we assume they vary 
sinusoidally with rotor position: 
 ( )sinA mkε θ θ= �          (2.1) 
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where θ  denotes the rotor position and mk  represents the winding constant (i.e. voltage constant) 

for each winding.  Note that this is not equal to the average voltage constant, ˆ
mk , that is 

commonly given in motor datasheets.  For a ∆-wound motor, these two quantities are related by:  

ˆ ˆ1.047
3m m mk k k
π
= ≈ .         (2.4) 

Performing KVL on each of the three winding legs: 

2 1 A W AV V R iε− = − +          (2.5) 

3 2 B W BV V R iε− = − +          (2.6) 

1 3 C W CV V R iε− = − +  ,        (2.7) 
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where, as indicated in figure 2, WR  denotes the resistance of each winding (equal to 1.5 times the 

phase-to-phase resistance, p pR
−

, listed in most datasheets). 

From Ohm’s law at each vertex of the delta: 

1 1 LV i R=           (2.8) 

2 2 LV i R=           (2.9) 

3 3 LV i R=           (2.10) 

Conservation of current at each vertex yields: 

1 A Ci i i= −           (2.11) 

2 B Ai i i= −           (2.12) 

3 C Bi i i= −           (2.13) 

Plugging (2.11) through (2.13) into (2.8) through (2.10): 

( )1 A C LV i i R= −          (2.14) 

( )2 B A LV i i R= −          (2.15) 

( )3 C B LV i i R= −          (2.16) 

And plugging (2.14) through (2.16) into (2.5) through (2.7): 
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( )2L A L B L W C CR i R i R R i ε+ − + = −        (2.19) 

This is a simple linear algebraic system of three equations which can be written in matrix form as 
follows: 
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Solving this system for the winding currents, we obtain: 
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where we have used equation (1.5) to reduce the equations (the sum of the back-EMF’s is also 
zero for a delta winding configuration). 
 
Continuing with the study of winding A, the torque produced by Ai  is proportional to Ai  and we 

assume it varies sinusoidally with rotor position (with the same phase as the back-EMF): 
 ( )sinA m AT k i θ=          (2.24) 
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Plugging (2.21) into this, we obtain an expression for the torque produced solely by Ai  (as a 

function of rotor position): 
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The average of this torque over one rotor revolution is give by: 

 ( )
2 22 2

2

0 0

1 1 1ˆ sin
2 2 3 2 3

m m
A A

L W L W

k k
T T d d

R R R R

π πθ θθ θ θ π
π π π

= = =
+ +∫ ∫� �

   (2.26) 

Simplifying, we obtain: 
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Again, this represents the average load torque due to the current flowing through winding A 
only.  Windings B and C contribute the same amount of torque.  The total average load torque 
produced by all three winding currents is simply three times this value: 
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Substituting for mk  and WR  in terms of ˆmk  and p pR
−
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Note that this is exactly the same relation that we found for a Y-wound motor in (1.22).  Solving 
for LR  will therefore yield the same equation as (1.23). 

 
The average heat dissipation in the load motor is given by: 
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Again in terms of p pR
−

 and ˆmk : 
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Notice again that this is the same equation we obtained for a Y-wound motor in equation (1.25). 
 
Similarly, the average power dissipation in EACH external load resistor is: 
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Once again, when putting this in terms of p pR
−

 and ˆmk , we obtain: 
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just as for the Y-wound configuration. 
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APPENDIX A - MOTOR CONSTANT CONVERSION 
 

For a Y-wound motor 
The phase-to-phase voltage across windings A and B is given by: 
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Simplifying: 

( )3sinAB mV k θ θ φ= +�  

Differentiating: 

( )3 cosAB
m

dV
k

d
θ θ φθ = +�  

The min/max occurs when: 

( )
,

,

0 cos 0

; 0, 1, 2,
2

; 0, 1, 2,
2

AB
m

m n

m n

dV

d

n n

n n

θ φθ
πθ φ π

πθ φ π

= ⇒ + =

⇒ + = + = ± ±

⇒ = − + = ± ±

…

…

 

Differentiate again to check for max or min: 
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Note that maximum corresponds to points where 
2

2
0ABd V

dθ
< .  This is the case when n=0 (among 

others).  Therefore, we know that VAB reaches its max at max 2

πθ φ= − .  What we’re interested in 

is the average value of VAB throughout a 60 degree range of rotor position, centered at this 
maximum point: 
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From this we conclude: 
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For a ∆-wound motor: 
The phase-to-phase voltage across from V1 to V2 is given by: 
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By inspection, max occurs at 
2

πθ = .  What we’re interested in is the average value of V12 

throughout a 60 degrees range of rotor position, centered at this maximum point: 
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From this we conclude: 
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